‘sugar-coated’ nanomaterial can promote the growth of new bone

Posted on

There has never been a gold standard for how orthopedic spine surgeons promote new bone growth in patients, but now scientists at Northwestern University have designed a bioactive nanomaterial that is so good at stimulating bone regeneration it could become the new preferred method.

Regenerative medicine can improve quality of life by offering less invasive and more successful approaches to promoting bone growth,” said Samuel Stupp, who developed the new nanomaterial. “Our method is very flexible and could be adapted for the regeneration of other tissues, including muscle, tendons and cartilage.” Stupp is director of Northwestern’s Simpson querrey Institute for Bio Nanotechnology and professor of materials science and engineering, chemistry, medicine and biomedical engineering. Sugar molecules on the surface of the nanomaterial provide its regenerative power, while the nanomaterial is built from self-assembling molecules known as peptide amphiphiles, first developed by Stupp 15 years ago. These synthetic molecules have been essential in his work on regenerative medicine. The researchers studied in vivo the effect of the ‘sugar-coated’ nanomaterial on the activity of a clinically used growth factor called bone morphogenetic protein 2 (BMP-2), finding that 100 times less BMP-2 was needed for a successful spinal fusion. This is very good news, because the growth factor is expensive and known to cause dangerous side effects when used in the amounts currently required to regenerate high-quality bone.

Read more at https://www.scitechnol.com/biomaterials-medical-applications.php


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s